Categories
Tech

My 3-D Story

I have been doing 3-D modeling and 3-D printing since 2011.

I started out with a RepRapPro Mendel TriColour that I built from a parts kit and upgraded several times. This was a great printer, but was frankly borderline experimental. Everything had to be frequently adjusted by hand and successful prints were occasional (maybe 50% at its best.)

My second printer was a cousin to the first, a Prusa I3 MK3 (now an S) built from a kit that I got in November 2018. The improvements from the first to second printer include: auto bed levelling, filament run-out detection, magnetic spring steel flexible print plate, Bondtech dual gear extrusion system, custom E3D V6 all-metal hot end and resume on power failure. Basically, it has improved every area that could have been considered weak or unreliable through iterative engineering. The printer has been an absolute workhorse (currently at 29 kilometers of filament extruded) and my print success rate is more like 98%. Don’t call it fool-proof (they’ll invent a better fool) but it is a solid, consistent performer.

Over the last twelve years I tried a variety of (mostly open source) slicers with varying degrees of success. SkeinForge, Slic3r, Repetier, Cura, KISSlicer, IceSL. Prusa forked Slic3r into PrusaSlicer which is currently the best, most integrated, and extensively developed slicer option available.

I’ve made extensive use of Blender, OpenSCAD, FreeCAD, and a variety of other open source, free, and for-pay, commercial software over the years to do design, object repair, object modifications, customizations.

Categories
Printables.Com

Who are the Prusa Approved Designers?

The title of “Prusa Approved Designer” is awarded at by the Printables Team at its discretion to recognize and reward long-term, consistent, and high-quality work.  As of June 2022, there are 14 “Prusa Approved Designers” on Printables.Com. I’ve compiled them here for easy reference and one-page access in case you’d like to explore their profiles. Consider checking out, following, and supporting these successful and hard working designers if they interest you.

(in no particular order)

(Most of this information is gathered from the designers’ Printables.Com profile pages. It would be great if Printables could link in relevant Prusa Live Guest YouTube links and Contest Winner links back to the appropriate episode(s) and won contest(s), respectively.)

Categories
Tech

Making…

Just some of the products we’ve made over the years:

  • Scale architectural models (entire building structure, furniture/cabinet visualization)
  • Large-scale art installations
  • 3-D models of topographical data (localized and regional)
  • Woodworking alignment fixtures and jigs
  • Angle calibration gauges
  • Custom enclosures for electronics projects
  • Decorative figurines, vases, desk organizers
  • Educational lessons for use in schools
Categories
Tech

How does 3-D Printing work?

The first step of 3-D printing something out of plastic is to define or get a 3-D model of the object you would like to print. To define the object you would use 3-D CAD (Computer-aided Design/Drafting) software like OpenSCAD, Autodesk Fusion 360, SketchUp, or OnShape that allow you to design your object and export the result as an .STL file. Alternately, you can search an find a part that has already been designe that also meets your needs. There a numerous 3-D model repositories and index sites online where you can download (free and paid) models to print.

Once you have your desired object defined, it will be loaded into software called a slicer (we use PrusaSlicer) that will break the 3-D object into a series of discrete layers and generate the step-by-step instructions for the 3-D printer to follow to create the object. There are many variables (layer height, perimeters, infill type, infill density) and configurables (support, rafts, brims) that can be modified in the slicer to get the exact print result you want. The output of the slicer software is a .gcode file containing all the instructions.

This .gcode is then loaded onto the 3-D printer along with the desired filament and the printer is given the instruction to start printing. The printer will heat up the bed and nozzle, the step through the instructions (gcode) created by the slicer. Depending on the size of the object, the layer height, density of infill the printing of your object can take anywhere from tens of minutes to tens of hours or even multiple days.

Once the print is finished the printer will cool down and the print will be removed from the print bed. Any necessary post processing (removing supports, sanding surfaces, finishing, painting) would then be performed. This process ends with a 3-D plastic model of the object you designed or selected.

While the capabilities of 3-D printers continue to increase and prices continue to decrease, we realize that not everyone wants to do every step of this process. We can help by performing any or every step of this process for you, or we can assist you in any area where you need help.

Categories
Welcome to

layer.works

layer.works is a full-service 3-D design/make/teach service provider, based in Central Alabama.

We do custom prototyping, mass production, training, troubleshooting, and consultation in additive and subtractive manufacturing.

If you have 3-D printing, 3-D design, or large-format CNC (4×8 foot) needs, send us an inquiry and we’ll get back to you quickly. Not sure if we can help you? Drop us a line with your needs and we’ll figure out what we can do or point you in the right direction.

We use and support Open Source hardware, software, principles, and methods whenever we can.

On Printables.Com – Our Profile

On Thingiverse – Our Profile